
Rexx Objects

Dipping a toe in the object pool

Rick McGuire
2008 Rexx Symposium

An altogether too common
statement:
● “these needs arise from t r ying not to use

the oo featur es of oor exx since i'm creating
a way for some users who know no
programming language to use the minimal
featur es of rexx.”
– Recent comment on the REXXLA mailing list

(emphasis added)

This frequently results in
rejecting the easiest solution
● The discussion from the previous statement

ended up as a discussion of whether interpret
or value() provided the better solution.
– did not meet the minimal featur es of r exx goal
– ooRexx solution would have been much smaller

and easier for the target users to understand

Goals of Object Rexx
Features
● Features were added with an eye toward

providing easier ways to solve problems that
users frequently asked about.
– Mike Cowlishaw's “top ten” list.
– Object orientation in many cases was the

solution, not the end goal of the design.

Typical Questions

● How do I pass/return a stem to/from a
procedure

● How do I expose a variable without having
to expose through all call levels

● How do I drop a sub-stem
● How do I copy a sub-stem
● How do I reuse more of my code
● How do I get stem.0 to be automatically set
● How do I implement callbacks within my

program

A simple example

emp.i.name = “Rick McGuire”
emp.i.location = “Sandy Hook”
....
call print_employees
....
print_employees:
procedure expose emp. empcount
do i = 1 to empcount
....
end

Common problems with using
the classic approach
● The “accidental simple variable” problem.
● Writing code to deal with multiple collections.
● The external function variable scope.
● The embedded “.” problem
● Some problem solutions require use of

interpret or value().

But wait...

● Structured data...
● A series of functions that operate on that

data....

SOUNDS LIKE AN OBJECT TO ME!

What is an object?

?????????

Object-oriented programming is
easy as...

Polymorphism

Inheritance

Encapsulation

A sample object

c 'SET ALT 0 0'
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY'

c 'BOTTOM' /* GOTOP */
c 'EXTRACT/FLSCREEN/'
if flscreen.1<1 then Signal AtTop
c 'TOP'
c 'EXTRACT/FLSCREEN/'
do while (flscreen.1<1)
 c 'DOWN 1'
 c 'EXTRACT/FLSCREEN/'
end

Another sample object

start = 5
length = 5
data = 'Flying pigs have wings'
parse var data x1 =(start) x2 +(length) x3

Encapsulation

● “Keep your paws off my data...”
● Internal data is hidden (“Encapsulated”)
● Manipulations are only via an interface that the

object defines

How do you write such a program
in Rexx?
● Very difficult

– Variable scoping rules require passing around of
“globals”

– Everything is open, everything is exposed
– Great care must be taken for naming variables,

procedures, etc., because all one shared namespace.

What is a Rexx object?

● An object is a bundle of Rexx variables (“instance
variables”)

● PLUS a “trusted” set of code that's allowed to
directly access those variables (“methods”)

● Methods may be invoked by “outsiders”
● You can have many instances of an object active

at one time.

A Classic Rexx program

Main program

sub1:
procedure expose g.

g.

sub2:
procedure expose g.

sub3:
procedure expose g.

Variables

The Object picture

name: rick
phone: 203-...

instance
variables

method
dictionary

expose name

the object

expose name

init print

A multiplicity of objects

name: rick
phone: 203-...

instance
variables

method
dictionary

expose name

the object

expose name

init print
another
 object

name: david
phone: 607-...

A simple Rexx object

::class employee public
::method init
 expose name location
 use strict arg name, location
::method name attribute
::method location attribute
::method print
 say self~string
::method string
 expose name location
 return name “at” location

Creating an object

● Objects are created by sending a “new” method to
a “Class” object

a = .employee~new(“Rick”, “Sandy Hook”)

● The class object allocates space, plugs in the
method dictionary, and calls “INIT” to finish up
construction.

Calling methods

● You call methods by “twiddling” the object

a~print

Creating your own objects

● Objects are created by making a Class object
factory, and defining methods associated with the
class

::class employee
::method init
expose name address
use strict arg name, address
::method name attribute

The Parser...

● A real example...an object based version of the
PARSE instruction

If it looks like a duck...

● ...and quacks like a duck, it's probably a duck.

Is this an XEDIT macro?

● ...or a KEDIT macro, or a THE macro?

c 'SET ALT 0 0'
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY'

c 'BOTTOM' /* GOTOP */
c 'EXTRACT/FLSCREEN/'
if flscreen.1<1 then Signal AtTop
c 'TOP'
c 'EXTRACT/FLSCREEN/'
do while (flscreen.1<1)
 c 'DOWN 1'
 c 'EXTRACT/FLSCREEN/'
end

Polymorphism

● “many bodies”
● In ooRexx terms, it means an object responds to

the message you send it.

Pipes

● How can all of these stages work together?
'PIPE (name LIST2SRC)',
'| <' fn 'listing *', /* Read the LISTING file */
'| mctoasa', /* Machine carriage ctl => ASA */
'| frlabel - LOC', /* Discard to start of program */
'| drop 1', /* Drop that '- LOC' line too */
'| tolabel - POS.ID', /* Keep only up to relocation */
'| tolabel -SYMBOL', /* dictionary or cross-ref */
'| tolabel 0THE FOLLOWING STATEMENTS', /* or diagnostics */
'| outside /1/ 2', /* Drop 1st 2 lines on each pg */
'| nlocate 5-7 /IEV/', /* Discard error messages */
'| nlocate 41 /+/', /* Discard macro expansions */
'| nlocate 40 / /', /* Discard blank lines */'| nlocate 5-7 /IEV/', /* Discard error messages */
'| nlocate 41 /+/', /* Discard macro expansions */
'| nlocate 40 / /', /* Discard blank lines */
'| specs 42.80 1', /* Pick out source "card" */
'| >' fn 'assemble a fixed' /* Write new source (RECFM F) */

DO OVER

● How can DO OVER iterate over
– An array
– A stem
– A stream?

● It really only understands arrays, but it sends a
“MAKEARRAY” message to the object to get
one.

● Any object can provide a MAKEARRAY method
and work with DO OVER.

Never write this program again

select
 when type = 1 then call printEmployee
 when type = 2 then call printManager
 when type = 3 then call printExecutive
 when type = 4 then call printContractor
end

...do this instead

 anEmployee~print

The TreeTable

● The tree table is polymorphic with the ooRexx
Directory class

● A totally new implementation
– Can be used interchangeably with directory objects

Standing on the shoulders of
giants...
● One of the major benefits of O-O programming is

code reuse
– Don't copy the code and modify...
– Use the original directly and extend and override.

Inheritance

● When you create a class, you can start by
“subclassing” an existing class.

● You “inherit” the methods and data of the existing
class...

● ...and add some of your own.

Why inherit?

● Extend existing function
● Alter/extend the behavior of an existing class to

meet your requirements
● Complete the implementation of an abstract

concept (inherit from a “framework”)
● Another means of achieving polymorphism

Enhancing the function

● Add additional capability to an existing class
– Q: How hard would it be to add regular expression

support to the PARSE instruction yourself?
– Q: How hard would it be to add regular expression

support to the Parser sample yourself?

The enhanced parser

● Same base parser, but additional function added

Getting a little SELFish

● In any ooRexx method, the variable SELF will
point to the object you use to invoke the method
– This allows you to invoke “subroutines” using your

own context:

::method string
return self~name “living at” self~address

Before, after, and in between

● When you subclass, you can override methods of
the superclass, but still use those methods

::method string
return “This is my version of” self~string:super

Making callbacks

● Some classes define empty methods and allow
you to fill in the blanks:

::class myparser subclass xmlparser
::method start_element
use arg chunk
call charout , '<'chunk~tag
if chunk~attr <> .nil then do f over chunk~attr
 call charout , ' 'f'="'self~textxlate(chunk~attr[f])'"'
 end
say '>'
return

::method end_element
use arg chunk
say '</'chunk~tag'>'
return

::method passthrough
use arg chunk
say '<'chunk~text'>'
return

All we are saying, is give
peace a chance...
● Allow the ooRexx language to help you with

what you're already trying to do!
● Using ooRexx features doesn't require a

complete reshaping of your mind set...
– immediately rejecting these features frequently means

you're working too hard!

Object-oriented programming is
easy as...

Polymorphism

Inheritance

Encapsulation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

