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An altogether too common
statement:
● “these needs arise from t r ying not  to use 

the oo featur es of  oor exx since i'm creating 
a way for some users who know no 
programming language to use the minimal 
featur es of rexx.”
– Recent comment on the REXXLA mailing list 

(emphasis added)



This frequently results in
rejecting the easiest solution
● The discussion from the previous statement 

ended up as a discussion of whether interpret 
or value() provided the better solution.
– did not meet the minimal featur es of  r exx goal
– ooRexx solution would have been much smaller 

and easier for the target users to understand



Goals of Object Rexx 
Features
● Features were added with an eye toward 

providing easier ways to solve problems that 
users frequently asked about.
– Mike Cowlishaw's “top ten” list.
– Object orientation in many cases was the 

solution, not the end goal of the design.



Typical Questions

● How do I pass/return a stem to/from a 
procedure

● How do I expose a variable without having 
to expose through all call levels

● How do I drop a sub-stem
● How do I copy a sub-stem
● How do I reuse more of my code
● How do I get stem.0 to be automatically set
● How do I implement callbacks within my 

program



A simple example

emp.i.name = “Rick McGuire”
emp.i.location = “Sandy Hook”
....
call print_employees
....
print_employees: 
procedure expose emp. empcount
do i = 1 to empcount
....
end



Common problems with using
the classic approach
● The “accidental simple variable” problem.
● Writing code to deal with multiple collections.
● The external function variable scope.
● The embedded “.” problem
● Some problem solutions require use of 

interpret or value().



But wait...

● Structured data...
● A series of functions that operate on that 

data....

SOUNDS LIKE AN OBJECT TO ME!



What is an object?

?????????



Object-oriented programming is 
easy as...

Polymorphism

Inheritance

Encapsulation



A sample object

c 'SET ALT 0 0'
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY'

c 'BOTTOM'           /* GOTOP */
c 'EXTRACT/FLSCREEN/'
if flscreen.1<1 then Signal AtTop
c 'TOP'
c 'EXTRACT/FLSCREEN/'
do while (flscreen.1<1)
   c 'DOWN 1'
   c 'EXTRACT/FLSCREEN/'
end



Another sample object

start = 5
length = 5
data = 'Flying pigs have wings'
parse var data x1 =(start) x2 +(length) x3



Encapsulation

● “Keep your paws off my data...”
● Internal data is hidden (“Encapsulated”)
● Manipulations are only via an interface that the 

object defines



How do you write such a program 
in Rexx?
● Very difficult

– Variable scoping rules require passing around of 
“globals”

– Everything is open, everything is exposed
– Great care must be taken for naming variables, 

procedures, etc., because all one shared namespace.



What is a Rexx object?

● An object is a bundle of Rexx variables (“instance 
variables”)

● PLUS a “trusted” set of code that's allowed to 
directly access those variables (“methods”)

● Methods may be invoked by “outsiders”
● You can have many instances of an object active 

at one time.



A Classic Rexx program

Main program

sub1:
procedure expose g.

g.

sub2:
procedure expose g.

sub3:
procedure expose g.

Variables



The Object picture

name: rick
phone: 203-...

instance 
variables

method
dictionary

expose name

the object

expose name

init print



A multiplicity of objects

name: rick
phone: 203-...

instance 
variables

method
dictionary

expose name

the object

expose name

init print
another
 object

name: david
phone: 607-...



A simple Rexx object

::class employee public
::method init
  expose name location
  use strict arg name, location
::method name attribute
::method location attribute
::method print
  say self~string
::method string
  expose name location
  return name “at” location



Creating an object

● Objects are created by sending a “new” method to 
a “Class” object

a = .employee~new(“Rick”, “Sandy Hook”)

● The class object allocates space, plugs in the 
method dictionary, and calls “INIT” to finish up 
construction.



Calling methods

● You call methods by “twiddling” the object

a~print



Creating your own objects

● Objects are created by making a Class object 
factory, and defining methods associated with the 
class

::class employee
::method init
expose name address
use strict arg name, address
::method name attribute



The Parser...

● A real example...an object based version of the 
PARSE instruction



If it looks like a duck...

● ...and quacks like a duck, it's probably a duck.



Is this an XEDIT macro?

● ...or a KEDIT macro, or a THE macro?

c 'SET ALT 0 0'
c 'SET DISPLAY' On On
c 'SET SCOPE DISPLAY'

c 'BOTTOM'           /* GOTOP */
c 'EXTRACT/FLSCREEN/'
if flscreen.1<1 then Signal AtTop
c 'TOP'
c 'EXTRACT/FLSCREEN/'
do while (flscreen.1<1)
   c 'DOWN 1'
   c 'EXTRACT/FLSCREEN/'
end



Polymorphism

● “many bodies”
● In ooRexx terms, it means an object responds to 

the message you send it.



Pipes

● How can all of these stages work together?
'PIPE (name LIST2SRC)',
'| <' fn 'listing *', /* Read the LISTING file */
'| mctoasa', /* Machine carriage ctl => ASA */
'| frlabel - LOC', /* Discard to start of program */
'| drop 1', /* Drop that '- LOC' line too */
'| tolabel - POS.ID', /* Keep only up to relocation */
'| tolabel -SYMBOL', /* dictionary or cross-ref */
'| tolabel 0THE FOLLOWING STATEMENTS', /* or diagnostics */
'| outside /1/ 2', /* Drop 1st 2 lines on each pg */
'| nlocate 5-7 /IEV/', /* Discard error messages */
'| nlocate 41 /+/', /* Discard macro expansions */
'| nlocate 40 / /', /* Discard blank lines */'| nlocate 5-7 /IEV/', /* Discard error messages */
'| nlocate 41 /+/', /* Discard macro expansions */
'| nlocate 40 / /', /* Discard blank lines */
'| specs 42.80 1', /* Pick out source "card" */
'| >' fn 'assemble a fixed' /* Write new source (RECFM F) */



DO OVER

● How can DO OVER iterate over 
– An array
– A stem
– A stream?

● It really only understands arrays, but it sends a 
“MAKEARRAY” message to the object to get 
one.

● Any object can provide a MAKEARRAY method 
and work with DO OVER.



Never write this program again

select 
    when type = 1 then call printEmployee
    when type = 2 then call printManager
    when type = 3 then call printExecutive
    when type = 4 then call printContractor
end



...do this instead

                     anEmployee~print



The TreeTable

● The tree table is polymorphic with the ooRexx 
Directory class

● A totally new implementation
– Can be used interchangeably with directory objects



Standing on the shoulders of 
giants...
● One of the major benefits of O-O programming is 

code reuse
– Don't copy the code and modify...
– Use the original directly and extend and override.



Inheritance

● When you create a class, you can start by 
“subclassing” an existing class.

● You “inherit” the methods and data of the existing 
class...

● ...and add some of your own.



Why inherit?

● Extend existing function
● Alter/extend the behavior of an existing class to 

meet your requirements
● Complete the implementation of an abstract 

concept (inherit from a “framework”)
● Another means of achieving polymorphism



Enhancing the function

● Add additional capability to an existing class
– Q:  How hard would it be to add regular expression 

support to the PARSE instruction yourself?
– Q:  How hard would it be to add regular expression 

support to the Parser sample yourself?



The enhanced parser

● Same base parser, but additional function added



Getting a little SELFish

● In any ooRexx method, the variable SELF will 
point to the object you use to invoke the method
– This allows you to invoke “subroutines” using your 

own context:

::method string
return self~name “living at” self~address



Before, after, and in between

● When you subclass, you can override methods of 
the superclass, but still use those methods

::method string
return “This is my version of” self~string:super



Making callbacks

● Some classes define empty methods and allow 
you to fill in the blanks:

::class myparser subclass xmlparser
::method start_element
use arg chunk
call charout , '<'chunk~tag
if chunk~attr <> .nil then do f over chunk~attr
   call charout , ' 'f'="'self~textxlate(chunk~attr[f])'"'
   end
say '>'
return

::method end_element
use arg chunk
say '</'chunk~tag'>'
return

::method passthrough
use arg chunk
say '<'chunk~text'>'
return



All we are saying, is give 
peace a chance...
● Allow the ooRexx language to help you with 

what you're already trying to do!
● Using ooRexx features doesn't require a 

complete reshaping of your mind set...
– immediately rejecting these features frequently means 

you're working too hard!



Object-oriented programming is 
easy as...

Polymorphism

Inheritance

Encapsulation
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